Noetherian algebras over algebraically closed fields

نویسنده

  • Jason P. Bell
چکیده

Let k be an uncountable algebraically closed field and let A be a countably generated left Noetherian k-algebra. Then we show that A⊗k K is left Noetherian for any field extension K of k. We conclude that all subfields of the quotient division algebra of a countably generated left Noetherian domain over k are finitely generated extensions of k. We give examples which show that A⊗k K need not remain left Noetherian if the hypotheses are weakened.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On dimension of a special subalgebra of derivations of nilpotent Lie algebras

‎Let $L$ be a Lie algebra‎, ‎$mathrm{Der}(L)$ be the set of all derivations of $L$ and $mathrm{Der}_c(L)$ denote the set of all derivations $alphainmathrm{Der}(L)$ for which $alpha(x)in [x,L]:={[x,y]vert yin L}$ for all $xin L$‎. ‎We obtain an upper bound for dimension of $mathrm{Der}_c(L)$ of the finite dimensional nilpotent Lie algebra $L$ over algebraically closed fields‎. ‎Also‎, ‎we classi...

متن کامل

Stably Just Infinite Rings

We study just infinite algebras which remain so upon extension of scalars by arbitrary field extensions. Such rings are called stably just infinite. We show that just infinite rings over algebraically closed fields are stably just infinite provided that the ring is either right noetherian (4.2) or countably generated over a large field (6.4). We give examples to show that, over countable fields...

متن کامل

Noetherian Hopf Algebra Domains of Gelfand-kirillov Dimension Two

We classify all noetherian Hopf algebras H over an algebraically closed field k of characteristic zero which are integral domains of GelfandKirillov dimension two and satisfy the condition ExtH(k, k) 6= 0. The latter condition is conjecturally redundant, as no examples are known (among noetherian Hopf algebra domains of GK-dimension two) where it fails.

متن کامل

Multiplicative Complexity of Commutative Group Algebras over Algebraically Closed Fields

We determine structure and multiplicative complexity of commutative group algebras over algebraically closed fields. Commutative group algebra A of dimension n over algebraically closed field is isomorphic to B, where B is a superbasic algebra of minimal rank (see [5] for definition), and t is maximal that t | n, p t. Multiplicative and bilinear complexity of A equal to 2n − t.

متن کامل

A Class of Noncommutative Projective Surfaces

Let A = L i≥0 Ai be a connected graded, noetherian k-algebra that is generated in degree one over an algebraically closed field k. Suppose that the graded quotient ring Q(A) has the form Q(A) = k(X)[t, t, σ], where σ is an automorphism of the integral projective surface X. Then we prove that A can be written as a näıve blowup algebra of a projective surface X birational to X. This enables one t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006